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Abstract

We offer an equilibrium model of cryptocurrency pricing and confront
it to new data on bitcoin transactional benefits and costs. The model
emphasises that the fundamental value of the cryptocurrency is the stream
of net transactional benefits it will provide, which depend on its future
prices. The link between future and present prices implies that returns
can exhibit large volatility, unrelated to fundamentals. We construct an
index measuring the ease with which bitcoins can be used to purchase
goods and services, and we also measure costs incurred by bitcoin owners.
Consistent with the model, estimated transactional net benefits explain a
statistically significant fraction of bitcoin returns.
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1 Introduction

What is the fundamental value of cryptocurrencies, such as bitcoin? Does the
price of bitcoin reflect fundamental values or speculation unrelated to funda-
mentals? And does the large volatility of cryptocurrencies imply investors are
irrational? Several recent empirical papers have offered econometric tests of
bubbles in the cryptocurrency market (see for instance Corbet et al., 2018, or
Fantazzini et al., 2016, for a review). While these analyses use methods de-
veloped for stock markets, cryptocurrencies differ from stocks. This raises the
need for a new theoretical and econometric framework, to analyse the dynamics
of cryptocurrencies. The goal of the present paper is to offer such a framework
and confront it to the data.

We consider overlapping generations of agents, with stochastic endowments,
who can trade traditional fiat money (such as dollar) and a cryptocurrency
(such as bitcoin). While both can be used to purchase consumption goods in
the future, the cryptocurrency can provide transactional benefits that tradi-
tional money cannot. For example, citizens of Venezuela or Zimbabwe can use
bitcoins to conduct transactions although their national currencies and bank-
ing systems are in disarray, while Chinese investors can use bitcoins to transfer
funds outside China, in spite of government imposed restrictions on interna-
tional transfers.1 Along with these transactional benefits, cryptocurrencies also
come with transactions costs: limited convertibility into traditional currencies,
transactions costs on exchanges, lower rate of acceptance by merchants, or fees
agents must pay to have their transactions mined.2 In our analysis, investors
rationally choose their demand for cryptocurrency based on their expectation
of future prices and net transactional benefits.

Transactional benefits are to cryptocurrencies what dividends are to stocks.
Other things equal, the larger the transactional benefits, the larger is the price
investors are willing to pay for the asset. But there is a major difference. While
(in perfect markets) dividends don’t depend on stock prices, the transactional
benefits provided by cryptocurrencies depend on their price: the transactional
advantages of holding one bitcoin are much larger if a bitcoin is worth $15,000
than if it is worth $100. This point, which applies to all currencies, not only
cryptocurrencies, was already noted in Tirole (1985, p. 1515-1516):

“... the monetary market fundamental is not defined solely by
the sequence of real interest rates. Its dividend depends on its price.
[...] the market fundamental of money in general depends on the
whole path of prices (to this extent money is a very special asset).”

Thus, the notion of “market fundamental” means something very different for
stocks (backed by dividends) and money (backed by transactional services).
In particular, the feedback loop from prices to transactional benefits naturally

1Although China banned bitcoin exchanges in October 2017, it is still possible for Chinese
investors to trade bitcoins via bilateral, peer-to-peer interactions.

2Transactions fees for Bitcoin were particularly large during the last quarter of 2017. See
https://en.bitcoin.it/wiki/Transaction_fees.
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leads to equilibrium multiplicity: agents who expect future prices to be high
(resp. low) anticipate high (resp. low) future transactional benefits justifying a
high (resp. low) price today.

We depart from Tirole (1985) in ways we deem important for the dynamics
of cryptocurrencies. First, our model features two currencies, traditional money
and cryptocurrency. We thus derive a pricing equation expressing the expected
return on the cryptocurrency (say bitcoin) in traditional money (say dollars),
which we can confront to observed dollar returns of bitcoin. Second, in addition
to transactional benefits we also consider transaction costs, reflecting frauds and
hacks and the difficulty to conduct transactions in cryptocurrencies. Allowing
for a rich structure of transactional benefits and costs is key to our empirical
approach in which we construct measures of these fundamentals. Finally, while
Tirole (1985) considers a deterministic environment, we allow endowments, net
transactional benefits, and returns to be stochastic. Our econometric analysis
sheds light on the relationship between these random variables.

The model delivers the following insights:

• The price of one unit of cryptocurrency at time t is equal to the expectation
of its future price at time t + 1, discounted using a standard asset pric-
ing kernel modified to take into account transactional benefits and costs.
These benefits and costs reflect the evolution of variables from the real
economy affecting the usefulness of cryptocurrencies, e.g., development of
e-commerce or illegal transactions.

• The dynamic structure of equilibrium gives rise to a large multiplicity of
equilibria: we show in particular that when agents are risk neutral, if a
price sequence forms an equilibrium, then that sequence multiplied by an
extrinsic noise term, with expectation equal to one, is also an equilibrium.
Such extrinsic noise on the equilibrium path implies, in line with stylised
facts, large volatility for cryptocurrency prices, even at times at which
the fundamentals are not very volatile.3 This underscores that the Shiller
(1981) critique does not apply to cryptocurrencies.

• When transaction costs are large, investors require large expected returns
to hold the cryptocurrency. In contrast, large transactional benefits reduce
equilibrium required expected returns. Thus, large observed returns on
bitcoin are consistent with the prediction of our model when transactions
costs are large and transaction benefits are low.

Next, we confront these predictions of the model to the data. Using the
Generalised Method of Moments (GMM), we estimate the parameters of the
model and test the restrictions imposed by theory on the relation between cryp-
tocurrency returns and transaction costs and benefits. To do so, we construct a
time series of bitcoin prices from July 2010 to December 2018 by compiling data
from 20 major exchanges. We also construct three time series that proxy for

3Zimmerman (2020) proposes a different model in which the volatility of cryptocurrency
prices arises from the blockchain transaction validation process.
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the transactional costs and benefits of using bitcoin. The first one captures the
evolution of the transaction fees that bitcoin users attach to their transaction to
induce miners to process them faster. For the other two, we collect information
on events likely to affect the costs and benefits of transacting in bitcoin, and
categorise these events into two subsamples. The first subsample captures trans-
action costs: it contains events indicative of the ease with which bitcoins can be
exchanged against other currencies, such as a new currency becoming tradable
against bitcoin or the shutdown of a large platform. The second subsample
captures transactional benefits: it contains events affecting the ease with which
bitcoin can be used to purchase goods and services, such as merchants starting
or ceasing to accept bitcoin as a means of payment. From these subsamples we
construct two indexes that proxy for the transactional benefits and transaction
costs associated with bitcoin at every point in time. Finally, we collect data
about thefts and hacks on bitcoin to obtain a measure of the corresponding
losses.

Consistent with the model, GMM estimates show a negative and significant
relation between expected returns and transactional benefits and a positive and
significant relation between expected returns and transactional costs. We also
quantify the contribution of the different components of transactional costs and
benefits to required expected returns over time. During our entire sample period,
the average weekly return is 3.9% with a standard deviation of 17.3%. We
estimate that the costs induced by the difficulty to trade bitcoins were large in
2010 and contributed at that time to approximately fifteen percentage points
of weekly required return. This later decreased to ten percentage points as
investors could more easily trade bitcoins. On the other hand, transaction
fees have a negligible impact on required returns. Furthermore, transactional
benefits were initially low, reducing the weekly required return by less than one
percentage point. As more firms started accepting bitcoins to buy goods and
services, transactional benefits became larger, inducing a reduction in the weekly
required return of eight to ten percentage points since 2015. The estimation
also shows that while fundamentals are significant factors, they only explain a
relatively small share of return variations on bitcoin (less than 4%). Viewed
through the lenses of our theoretical model, this empirical result suggests that
observed bitcoin volatility in large part reflects extrinsic noise.

Related literature. Our analysis is related to the classic literature in mon-
etary economics in which money enables agents to carry mutually beneficial
trades they could not realise without money (Samuelson, 1958, Tirole, 1985 and
Wallace, 1980). In a similar OLG setting, Saleh (2020) compares equilibrium
prices and welfare in two protocols: proof-of-burn and proof-of-work, while Gar-
ratt and Wallace (2018) revisit the indeterminacy of exchange rates between two
currencies shown in Kareken and Wallace (1981) by introducing storage costs
for the traditional currency and a risk of currency crash for the cryptocurrency.
In Pagnotta (2020), this crash risk is interpreted as a security breach and is
endogenously decreasing in the computing power deployed by miners. This cre-
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ates a feedback loop where a higher bitcoin price stimulates miners’ investments,
which improves security and in turn raises the bitcoin price.4

In a model where agents have an infinite horizon, Schilling and Uhlig (2019a)
derive a version of the exchange rate indeterminacy result but also the existence
of a speculative equilibrium where agents hold the cryptocurrency in anticipa-
tion of its appreciation. Schilling and Uhlig (2019b) extend this framework
to asymmetric transaction costs. Benigno, Schilling and Uhlig (2019) analyse
monetary policy and equilibrium relations between interest rates and exchange
rates. In a search setting inspired by Lagos and Wright (2005), Fernández-
Villaverde and Sanches (2019) and Hendry and Zhu (2019) study the stability
and welfare implications of the private supply of money (cryptocurrency) along-
side a government-backed currency. Chiu and Koeppl (2017) use a similar search
model to study the optimal design of a cryptocurrency protocol. Vis-à-vis this
literature, our contribution is to propose a simple model capturing the transac-
tional costs and benefits of cryptocurrencies to generate a pricing equation and
confront it to the data.

A second stream of literature proposes pricing models in which the distinctive
feature of cryptocurrencies is to give access to a trading network (see Pagnotta,
2020 and Cong, Li and Wang, 2020). Sockin and Xiong (2020) highlight that
the complementarity in users’ decisions to adopt a cryptocurrency generates
multiple equilibria. Athey et al. (2016) analyse the dynamics of cryptocurrency
adoption when it serves both as means of payment and speculative instrument.
Our model differs from that literature in that we don’t cast exchanges of goods
for cryptocurrencies in terms of networks.

On the empirical side, Makarov and Schoar (2020), Borri and Shakhnov
(2019) and Hautsch, Scheuch, and Voigt (2020) document cryptocurrency mis-
pricing and arbitrage opportunities across exchanges. Abstracting from these
admittedly important short-term frictions, our work focuses on the longer term
dynamics of the fundamental value of bitcoin. This relates our paper to Liu and
Tsyvinski (2018), Bianchi (2018) and Bhambhwani, Delikouras and Korniotis
(2019). Liu and Tsyvinski (2018) and Bianchi (2018) document that bitcoin
or other cryptocurrencies do not show any exposure to common aggregate risk
factors (market portfolio, macro factors). Bhambhwani, Delikouras and Korni-
otis (2019) perform a multi factor analysis of 38 cryptocurrencies and highlight
that computing power and network size are cryptocurrency pricing factors. The
main difference between that literature and our paper is that we take a struc-
tural econometric approach to confront the theory to the data. Our indexes
measuring the ease and cost of using bitcoins are in the same line as the index
constructed by Auer and Claessens (2018) to measure the extent to which reg-
ulation is favourable to cryptocurrencies. Both Auer and Claessens (2018) and
the present paper study how the evolution of such indexes relates to the evolu-
tion of cryptocurrency prices. Differences between Auer and Claessens (2018)
and our paper include Auer and Claessens (2018)’s focus on regulatory events
and our reliance on a theoretical model.

4Relatedly, Prat and Walter (2018) analyse miners’ incentives to enter and build capacity.
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In the next section we present our theoretical analysis. Section 3 presents
the econometric method we develop to confront the theory to the data. Section
4 describes our sample and data collection procedure. The empirical analysis is
presented in Section 5. Section 6 concludes. Some proofs and discussions are
relegated to the appendix.

2 Theoretical model

2.1 Assumptions

There is one consumption good and three assets: a cryptocurrency, in supply
Xt at time t, a standard currency in fixed supply m, and a risk-free asset in
zero net supply: what is lent by one agent is borrowed by another one.

There are investors, miners and hackers. All are competitive and take prices
as given. We consider miners and hackers to introduce two important features
of the cryptocurrency, the creation of new coins and the risk of hacks, but, in
our model, their actions are very simple. They perform their activity and then
sell their cryptocurrency holdings and consume. In contrast, we analyse the
consumption and savings decisions of investors, which, combined with market
clearing, pin down equilibrium pricing.

At each time t a new generation of miners is born. Miners born at time
t mine until t + 1, at which point they get rewarded by newly created coins,
Xt+1 − Xt, and transaction fees. At time t + 1 they sell their coins against
consumption goods, which they consume (along with the fees they received)
before exiting the market.

Similarly, at each time t, a new generation of hackers is born. Hackers born
at time t try to steal some cryptocurrency. The fraction they manage to steal
is a random variable living in [0, 1], which we denote by ht+1. The index t + 1
reflects the fact that the fraction stolen is not known by investors at t, and is
only discovered at t + 1. At time t + 1, hackers sell their stolen coins against
consumption goods, which they consume before exiting the market.

Finally, a mass one continuum of investors are born at each date. They can
invest and consume at two dates, have separable utility u(.) over each consump-
tion, with u

′
> 0 and u

′′ ≤ 0, and discount factor β. At each date, their utility is
defined over consumption, which reflects transactional costs and benefits of us-
ing cryptocurrencies. To initialise the model, at date 1 there is also a generation
of old investors, miners and hackers, who hold the supply of cryptocurrencies
X1 and standard currency m.

At time t, each young investor is endowed with eyt units of consumption
good, can buy qt units of cryptocurrency, or coins, at unit price pt, q̂t units
of traditional fiat currency at unit price p̂t, and can save st. For notational
simplicity, the consumption good is the numeraire (as in Garratt and Wallace,
2018). That is, pt (resp. p̂t) is the number of units of consumption good that
can be purchased with one unit of cryptocurrency (resp. standard currency) at
date t.
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When buying cryptocurrency, each investor incurs a cost ϕt(qt)pt that re-
duces his consumption, with ϕ′ ≥ 0. The investor’s budget constraint is:

cyt = eyt − st − qtpt − q̂tp̂t − ϕt(qt)pt. (1)

The cost term ϕt(qt)pt reflects the cost of having a wallet, going through crypto-
exchanges, transactions fees, etc. It is indexed by t to capture the notion that
this cost can change with time. We assume that this cost is paid when buying
the cryptocurrency, and thus depends on the cryptocurrency price at time t.5

When old at time t + 1, each investor gets endowment eot+1 and consumes
endowment plus savings, plus proceeds from sale of currencies. For the tradi-
tional fiat currency these proceeds are q̂tp̂t+1. For the cryptocurrency, proceeds
are (1 − ht+1)qtpt+1, where, as mentioned above, ht+1 is the fraction of cryp-
tocurrency holdings that is stolen by hackers, between t and t + 1. Thus, old
investors consume

cot+1 = eot+1 + st(1 + rt) + (1− ht+1)(1 + θt+1)qtpt+1 + q̂tp̂t+1, (2)

where qt is the amount of cryptocurrency sold at t + 1 and θt+1qtpt+1 reflects
transactional services/benefits generated by cryptocurrencies. Those benefits
can stem from the ability to send money to another country, without using
the banking system, and without being controlled by the government. Also,
cryptocurrencies can enable agents to purchase enhanced goods. Since the agent
uses that cryptocurrency to buy consumption at time t + 1 the transactional
benefits reflect the time t+ 1 price.

Equation (2) covers two cases: If θt+1 ≥ −1, then old agents sell all their
holdings of cryptocurrency qt. If θt+1 < −1, then old agents would be better off
not selling their holdings if pt+1 was strictly positive. In that case, equilibrium
will imply pt+1 = 0 as discussed below.

Note that, in our theoretical and our empirical analyses, we assume {Xt}t>0,
{θt}t>0 and {ϕt}t>0 are exogenous processes, independent from the actions of
the agents in the market.

2.2 Equilibrium and optimality conditions

A rational expectation equilibrium is defined by prices {pt, p̂t, rt}t>0 and port-
folio decisions {qt, q̂t, st}t>0 such that

(i) at each time t, {qt, q̂t, st} maximises young consumers’ expected utility
over periods t and t+ 1 given prices and subject to the budget constraints
(1) and (2) and to consumptions cyt and cot+1 being positive,

(ii) at each time t, the markets for the cryptocurrency, the other currency and
the risk-free asset clear: qt = Xt, q̂t = m and st = 0.

5The analysis remains largely unchanged if we include a cost when selling the cryptocur-
rency at t + 1 as well.
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From (i), a young investor at date t solves

max
qt,st,q̂t

u(cyt ) + βEtu(cot+1) + µcyt ,

where µ is the multiplier of the constraint that consumption must be positive
and Et is the expectation conditional on time t information. Assume first that
this constraint does not bind. The first order optimality condition with respect
to qt, together with market clearing, yields

pt = βEt

[
u′(cot+1)

u′(cyt )
(1− ht+1)

(1 + θt+1)

(1 + ϕ′t(Xt))
pt+1

]
. (3)

The first order condition with respect to st is

β =
1

1 + rt

u′(cyt )

Et
[
u′(cot+1)

] . (4)

On the equilibrium path, at time t old investors cannot borrow or lend, since
they won’t be present in the market at time t+ 1. Hence, in equilibrium st = 0.
So the interest rate must adjust so that (4) holds when evaluated at st = 0.

Denote

1 + Tt+1 =
1 + θt+1

1 + ϕ′t(Xt)
. (5)

Tt+1 can be interpreted as the net transactional benefit per unit of the cryp-
tocurrency, reflecting its transactional benefits (θt+1) net of its transactions
costs (ϕ′t). Using (4) to replace β into (3), we obtain our first proposition.

Proposition 1 The equilibrium price of the cryptocurrency at time t is

pt =
1

1 + rt
Et

(
u′(cot+1)

Et
[
u′(cot+1)

] (1− ht+1) (pt+1 + Tt+1pt+1)

)
. (6)

In the appendix, we complete the proof of Proposition 1 by showing that
(6) also holds when the constraint that consumption is positive binds. When
consumption is zero, if pt was strictly lower than the RHS of (6), the agent would
like to borrow in order to buy more cryptocurrencies. That would contradict
equilibrium in the zero-supply risk-free asset market. In other words, rt adjusts
so that (6) holds.

Equilibrium multiplicity. The multiplicative structure of the pricing equa-
tion (6), in which pt+1 multiplies all the other terms on the right-hand-side,
implies there are multiple equilibria. For instance, as is standard in OLG mod-
els of money, there exists an equilibrium in which the cryptocurrency price is
equal to zero at all dates (see for instance Kareken and Wallace, 1981 or Garratt
and Wallace, 2018). The intuition is the following: if a young investor at date
t anticipates that pt+1 = 0, then for any strictly positive price pt > 0, he does
not want to buy any strictly positive quantity qt. Indeed, choosing qt > 0 does
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not increase his consumption at t + 1, and strictly reduces his consumption at
t. In that case market clearing can only occur if pt = 0.

Note that pt can be strictly positive in equilibrium even if the cryptocur-
rency price may fall to zero in future periods, as long as the probability of this
happening is strictly lower than one in any given period. Furthermore, if the
price reaches 0 at some date T then (6) implies pT+1 = 0 with probability one,
and by induction, the cryptocurrency price remains equal to 0 after T .

Bounded prices. There is a natural bound on equilibrium prices in our
model. In equilibrium at each date t the entire supply of bitcoin is purchased by
the young generation. Budget constraint and market clearing therefore imply
that

eyt ≥ (Xt + ϕt(Xt))pt. (7)

If pt was higher than
eyt

Xt+ϕt(Xt)
, young investors could not buy the bitcoin

holdings of old investors, miners and hackers, which would contradict market
clearing.

Fundamental value, price and transactional benefit. Equation (6) states
that the price of the cryptocurrency at time t is equal to the present value of
the expectation of the product of three terms: i) The first term is the pricing
kernel, capturing the correlation between the marginal utility of consumption
and the cryptocurrency price. ii) The second term reflects the risk of hacks.
iii) The third term is the sum of the price of the cryptocurrency at time t + 1
and its net transactional benefit. This pricing equation is similar to that which
would obtain for other assets, e.g., stocks, except that, for stocks, the second
term would not be there, and the third term would be different.

In (6) the net transactional benefit (in the third term) is equal to a scalar
multiplied by the price of the cryptocurrency. Other things equal, the larger
the cryptocurrency price, the larger its net transactional benefit. This differs
from stocks traded in a perfect market in which the stock price at t reflects the
expectation of the price at t + 1 plus profits or dividends at t + 1, which do
not depend on the t + 1 stock price. Thus, while, for stocks, dividends cause
fundamental value and therefore prices, in contrast, for currencies, prices cause
transactional benefits and therefore fundamental value.

Note that (6) implies that the price at time t+ 1 verifies

pt+1 = Et+1

[
1− ht+2

1 + rt+1

u′(cot+2)

Et+1

[
u′(cot+2)

] (pt+2 + Tt+2pt+2)

]
. (8)

Substituting (8) into (6) yields

pt = Et

[(
1− ht+1

1 + rt

u′(cot+1)

Et
[
u′(cot+1)

]) (1 + Tt+1)

(
1− ht+2

1 + rt+1

u′(cot+2)

Et
[
u′(cot+2)

]) (1 + Tt+2)pt+2

]
.

Iterating we obtain our next proposition.
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Proposition 2 The equilibrium price of the cryptocurrency at time t is equal
to the present value of the risk-adjusted expectation of the stream of net trans-
actional benefits until t + K plus the price at time t + K, net of losses due to
hacking

pt = Et

 K∑
k=1

 k∏
j=1

1− ht+j
1 + rt+j−1

u′(cot+j)

Et
[
u′(cot+j)

]Tt+kpt+k
+

 K∏
j=1

1− ht+j
1 + rt+j−1

u′(cot+j)

Et
[
u′(cot+j)

]
 pt+K

 ,

(9)
or equivalently

pt = Et

[(
K∏
k=1

(1− ht+k)
u′(cot+k)

Et
[
u′(cot+k)

] (1 + Tt+k)

1 + rt+k−1

)
pt+K

]
. (10)

The first term on the right-hand-side of (9) is the stream of net transactional
benefits, corresponding to the fundamental value of the currency. When the
price of the currency remains bounded, the second term on the right-hand-side
of (9) goes to 0 as K goes to infinity. In that case, the current price is just the
expectation of the infinite stream of net transactional benefits.

Equation (9) illustrates how the cryptocurrency price today, pt, depends on
the expectation of net transactional benefits that can be arbitrarily far in the
future. For instance, a high price today is not inconsistent with a low expected
net transactional benefit next period, if one expects the transactional benefit or
the price to be high in the future.

Equation (10) provides a lower bound for net transactional benefits compat-
ible with strictly positive prices. To see this, suppose that the net transactional
benefit Tt+k falls below −1 with probability 1 in some period t+k arbitrarily far
in the future. From the definition of T in (5), this is equivalent to the transac-
tional benefit θt+k being also strictly lower than −1. Then pt+k must be 0 since
there is no supply of cryptocurrency from old agents at any strictly positive
price, and the only price pt that can satisfy (10) is 0. Alternatively, suppose
that the probability the transactional benefit falls below −1 is strictly lower
than 1 in every period. In that case, pt may still be positive, but if Tt+k < −1
realises at some period t + k, we must have pt+k = 0 for markets to clear. It
follows that the cryptocurrency price remains at 0 in every period after t+ k.

3 Econometric model and implications

The equilibrium price formulae presented above involve pricing kernels, which
are difficult to estimate. To abstract from this difficulty, in our econometric
framework we make the following assumption:

Assumption A1 Investors are risk neutral.

In practice, A1 should be innocuous because, during our sample period, the
capitalisation of bitcoin has only been a small fraction of aggregate wealth, so
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the risk of changes in marginal consumption induced by bitcoin returns cannot
have been very large in the aggregate. Indeed, Liu and Tsyvinski (2018) find
empirically that the correlation of bitcoin returns with durable or non durable
consumption growth, industrial production growth and personal income growth
is economically and statistically insignificant.

3.1 Exogenous volatility

Under A1, the equilibrium pricing relation (6) simplifies to

pt =
1

1 + rt
Et ((1− ht+1) (1 + Tt+1) pt+1) . (11)

That is

pt = Et

[(
K∏
k=1

(1− ht+k)
(1 + Tt+k)

1 + rt+k−1

)
pt+K

]
. (12)

Relying on (12), we obtain the next proposition.

Proposition 3 Consider a sequence of prices {pt}t=1,..,∞ satisfying (12). If
agents’ consumption is strictly positive on the equilibrium path, there exists a
constant λ > 0 and a sequence of random variables ũτ , Et(ũτ ) = 1, such that
the new price sequence

{p̄t}t=1,..,∞ =

{
λ

(
t∏

τ=1

uτ

)
pt

}
t=1,..,∞

, (13)

also satisfies (12), and therefore is also an equilibrium.

The proposition states that the equilibrium pricing equation (12) is consis-
tent with arbitrary randomness in prices unrelated to the fundamental variables
(θt, ht, ϕt). This reflects the multiplicative structure of the equilibrium pricing
of the currency. This implies that, in contrast with the argument invoked by
Shiller (1981) for stocks (whose prices are more volatile than would be warranted
by the volatility of the dividends which underly their fundamental value), larger
volatility of bitcoin prices than of variables affecting bitcoin’s fundamental value
(i.e., net transactional benefits) is not sufficient to reject rational expectations
equilibrium.6 The variance of ũτ cannot be infinite, however, because prices
must remain within bounds, as noted in the previous section (see Equation 7).

6Campbell and Shiller (1988) emphasise that stock price changes can also stem from
changes in discount rates, reflecting changes in risk premia. This differs from the economic
mechanism at play in Proposition 3, in which agents are risk neutral.
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3.2 Moment conditions

Proceeding as for (11), one obtains the price of fiat currency,7

p̂t =
1

1 + rt
Et (p̂t+1) . (14)

In practice, since the first public quotation of bitcoin prices, in 2010, inflation in
the US has been low and not very volatile. In line with this observation, and in
order to simplify the econometric analysis, we hereafter maintain the following
assumption:

Assumption A2 Inflation in the standard currency between time t and time
t+ 1 is known at time t.

Under A2, in (14) p̂t+1 is in the information set used to take the expectation.
Hence (14) simplifies to

p̂t =
p̂t+1

1 + rt
, (15)

which reflects that, in our simple model, the short-term inflation rate is one to
one with the short-term interest rate.8

Dividing (11) by (15), the price of the cryptocurrency relative to the tradi-
tional fiat currency, pt

p̂t
, (e.g., the price of bitcoin in dollars) writes as:

pt
p̂t

=
1

1+rt
Et [(1− ht+1) (1 + Tt+1) pt+1]

p̂t+1

1+rt

,

which simplifies to

pt
p̂t

= Et

[
(1− ht+1) (1 + Tt+1)

pt+1

p̂t+1

]
. (16)

The rate of return on the cryptocurrency price expressed in traditional fiat
currency is

ρt+1 =

pt+1

p̂t+1

pt
p̂t

− 1.

Substituting in (16) we obtain our next proposition.

Proposition 4 Under A1 and A2, the rate of return on the cryptocurrency
price expressed in traditional fiat currency (ρt+1) is such that

Et

[
(1− ht+1)

1 + θt+1

1 + ϕ′t(Xt)
(1 + ρt+1)

]
− 1 = 0. (17)

7As for bitcoin, there exists an equilibrium such that the price of the fiat currency is zero
at all dates. Obstfeld and Rogoff (1983) show that such equilibria can be ruled out if the
central bank commits to an arbitrarily small redemption value for money (for an alternative
reason based on government’s fiscal power, see Gaballo and Mengus, 2018). In line with this
idea, we focus on equilibria in which the equilibrium price of central bank currency is strictly
positive.

8The inflation rate is it+1 such that: p̂t/p̂t+1 = 1 + it+1 which is equal to 1/(1 + rt.)
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Equation (17) reflects that, in equilibrium, investors must be indifferent
between using one unit of consumption good to invest in bitcoin (generating
transactional benefits as well as costs and hacking risk), or using it to invest in
dollars. Equation (17) yields the moment conditions we use in our econometric
analysis.

To see the intuition more clearly, note that a first-order Taylor expansion of
(17), for ρt+1, ht+1, ϕ

′

t and θt+1 close to 0, yields

Et [ρt+1] ≈ ϕ′t(Xt) + Et(ht+1)− Et(θt+1). (18)

That is, the expected return on the cryptocurrency must be (approximately)
equal to the marginal transaction cost (ϕ′t(Xt)), plus the expected cost of hacks
(Et(ht+1)), minus the expected transactional benefits (Et(θt+1)).

4 Data

Our dataset starts on July 17, 2010, with the opening of the MtGox bitcoin
marketplace, and ends on December 31, 2018. Computing a bitcoin price series
over a period of almost 9 years is subject to several caveats: new marketplaces,
sometimes short-lived, have been created and shut down at a rather high pace,
price volatility is high, and there is large price dispersion between exchanges even
when trading volumes are high (see Makarov and Schoar, 2020). To construct a
time series of bitcoin prices, we rely on the Kaiko dataset. We use all transaction
prices denominated in five currencies from 20 major exchanges.9 Pooling all
transaction prices in each currency, we split each UTC day in 5-minute intervals.
In each interval, we compute the volume weighted median price. To construct
a daily price for each currency, we then compute an arithmetic (unweighted)
average of these median prices. Using medians reduces the effect of outliers.
Using weighted medians prevents small trades from having too much influence.
Finally, non-weighted averages give equal weight to the information flowing at
different times during a day. To obtain a single daily price series, we convert
daily prices in each currency in US dollars using daily USD exchange rates from
FRED (Federal Reserve Economic Data) and compute an unweighted average
daily price. This time series is illustrated in Figure 1.

We retrieve bitcoin transaction fees paid to miners (hereafter referred to
as miners’ fees) from blockchain data using Blocksci, an open-source software
platform for blockchain analysis (Kalodner et al., 2017). Then, to compute

9Precisely, for transactions in euros, we use all transactions from Bitfinex, bitFlyer, Bit-
stamp, BTC-e, Coinbase-GDAX, CEX.IO, Gatecoin, HitBTC, itBit, Kraken and Quoine. For
transactions in US dollars, we use Bitfinex, bitFlyer, Bitstamp, Bittrex, BTC-e, BTCChina,
CEX.IO, Coinbase-GDAX, Gatecoin, Gemini, hitBTC, Huobi, itBit, Kraken, MtGox, OKCoin
and Quoine. For transactions in British pounds, we use Bitfinex, Coinbase-GDAX, CEX.IO
and Kraken. For transactions in Japanese yens, we use Bitfinex, bitFlyer, BTCBox, Kraken,
Quoine and Zaif. For transactions in Chinese yuans, we use BTCChina, BTC38, Huobi, OK-
Coin and Quoine. We also ran the estimation using only transactions between dollars and
bitcoins. This did not alter qualitatively our results. In particular it did not change the sign
and significance of the coefficient estimates.
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Figure 1: Bitcoin price, in USD

percentage miners’ fees we divide fees by transaction volume. Transaction vol-
ume, however, is difficult to measure (see for instance Meiklejohn et al., 2013,
or Kalodner et al., 2017). This is because part of the transfers occur among
addresses belonging to the same participant. Yet, in a pseudonymous network
like Bitcoin, the identity of the participant corresponding to an address cannot
be observed. To estimate bitcoin transaction volume we retrieve the on-chain
transaction volume, excluding coinbase transactions (that is, transactions that
reward miners by the creation of new bitcoins) and transfers from an address
to itself.10 From that value, we further exclude amounts that are likely to re-
sult from “self churn” behaviour, that is, transfers among adresses belonging to
the same participant.11 The time series of transaction volume is illustrated in
Figure 2.12

The time series of miners’ fees (in percent of transaction volume) is depicted
in Figure 3. The figure illustrates that, during most of the sample period,
miners’ fees are low. Daily fees amount to .0106% of transaction volume, on
average. Q1, median, and Q3 are .0038%, .0057% and .0099%, respectively.
There are a few spikes, however. The largest one occurs towards the end of 2017,
a time at which transaction fees exceeded 0.23%, due to the congestion triggered
by the surge in trading volume (see Easley, O’Hara and Basu, 2019, Huberman,

10The Bitcoin protocol states that an output of a transaction (that is, an amount payed
to a particular bitcoin address), when spent, must be spent in full. Thus, if a bitcoin owner
wants to transfer, e.g, 1 BTC to a payee, but owns 20 BTC as a single output of an earlier
transaction, she has to create a transaction with one input (the 20 BTC) and two outputs: 1
BTC to an address belonging to the payee, and 19 BTC (abstracting from the fee payed to
the miner of the block in which that transaction will be included) to herself. These 19 BTC
are change money, and should not be counted as transaction volume.

11For that purpose, we eliminate outputs spent within less than 4 blocks, an heuristic
proposed by Kalodner et al. (2017).

12The spike in trading volume at the end of 2011 was noted by the Bitcoin community and
was attributed to consolidation operations by MtGox.
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Figure 2: Estimated transaction volume, in millions of BTC

Leshno and Moalleni, 2019, or Iyidogan, 2019 for models of blockchain miners’
fees).

Browsing the web (in particular bitcointalk.org), we collected information
about all hacks and other losses on Bitcoin. We identified and collected data
on about 53 such events over our sample period.13 We collected the amounts
of the losses and the times at which they were reported. To obtain percentage
losses (to fit our definition of h), we divide lost amounts by Xt. This time series
is illustrated in Figure 4. The corresponding events are listed in Table 3 in
Appendix 3. The largest loss is due to the collapse of MtGox in February 2014,
when 744,408 bitcoins were lost. On average, during the whole sample period,
the fraction of bitcoins lost per week is approximately 0.04%.

We also collected information about events likely to affect the costs and
benefits of using bitcoins. We distinguished between two types of events, relative
to:

• The ease with which bitcoins could be exchanged with currencies such as
e.g. euros, Japanese yens, or US dollars.

• The ease to use bitcoins to buy goods or services and thus reap transac-
tional benefits.

As explained below, we constructed two indexes referred to as MarketAccess
and Benefit, measuring the cumulative impact of those events. To construct
MarketAccess, we identified 43 events over our sample period (see Table 4 in

13We have been unable to find information about the amount lost for the following three
events: the hack of the e-wallet service company Instawallet in April 2013; the hack of the
South Korean exchange Bithumb reported in June 2017; the hack of the South Korean ex-
change Youbit in December 2017.
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Figure 3: Miners’ fees, in percent of estimated transaction volume

Figure 4: Hacks, thefts and other losses of bitcoins, in percent of bitcoin supply
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Appendix 3). We considered three categories of events. The first category re-
lates to exchange platforms.14 It includes the creation of the first exchange
platform on which a given currency can be traded against bitcoin, or the clo-
sure of the last exchange platform on which that currency can be traded. For
example, in the case of the Chinese yuan, the first exchange opened on June
13, 2011, while the last one closed on September 30, 2017.15 The first category
of events also includes evolutions of these platforms, for example technological
improvements in their payment system (e.g. MtGox eased fund transfers on
October 25, 2010) or trading disruptions. The second category relates to regu-
latory changes that facilitate or impair the trading of bitcoin, for example the
ban of bitcoin trading by citizens in China from January 16, 2018. The third
category includes miscellaneous but important events, e.g., the opening of the
first bitcoin ATM on October 29, 2013, or the start of bitcoin futures trading at
the CBOE on December 10, 2017. Positive events are coded by +1 and negative
events by −1. To account for the importance of these events, we weight them by
the GDP of the country in which they take place, relative to the world GDP.16

The MarketAccess index is the sum of these weighted events: At each point in
time, it quantifies how easy it is to buy or sell bitcoins.

To construct Benefit, we identified 39 events, listed in Table 5 in Appendix
3. These events fall in two categories. The first category includes new goods and
services available for electronic purchase with bitcoins (e.g. computer hardware
or travel agency services or illegal products). For example, on June 11, 2014,
Expedia started accepting bitcoins for hotel reservations. An example of illegal
activity is the opening of SilkRoad on January 23, 2011. The second category
corresponds to new payment facilities (gift cards or payment systems accepting
bitcoins). For instance, Paypal accepted bitcoins on January 22, 2015. As
before, positive events are coded by +1 and negative events are coded by −1. We
do not weight these events because it is hard to define an appropriate weighting
scheme. The Benefit index is the sum of these events: At each time t it quantifies
the variety of goods and services which can be purchased with bitcoins.

The time series of the two indexes is illustrated in Figure 5. The Marke-
tAccess index increased sharply during the first two years, as new exchange
platforms allowing trades between bitcoins and new currencies opened. Two
major events triggered a sharp decrease in the index in 2013: MtGox suspended
fund transfers on May 14, 2013 and China banned financial institutions from
using bitcoins on December 3, 2013. The Benefit index remained low in the first
years of the sample period, reflecting that it was hard to use bitcoins to purchase
goods and services. It started increasing towards the end of 2013 and reached
its maximum in 2018. It then decreased somewhat, as some large companies

14We use the term exchange platform to refer to electronic limit order markets, although
such markets are not regulated exchanges.

15We consider all currencies for which bitcoin trading is significant, i.e. average trading
volume exceeds 100 transactions a day during the lifetime of a given market. For each currency,
we select as the event date the first day for which trading data is available in at least one
of the following two large-coverage, tick-by-tick datasets: Kaiko and bitcoincharts.com (see
https://bitcoincharts.com/markets/list/).

16We retrieve yearly GDP data from the World Bank database.
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Figure 5: MarketAccess and Benefit indexes

stopped accepting payments in bitcoins.

5 Estimation and results

This section first describes how the General Method of Moments (GMM) is used
to estimate the equilibrium bitcoin pricing equation. It then presents results
starting with ordinary least squares (OLS) estimation of a linearised version of
the pricing equation.17 The OLS parameter estimates are then converted into
starting values for the GMM optimisation. The section closes with presenting
the GMM results and discussing a couple of issues that merit attention.

5.1 Estimation methodology

We start by discussing how the various components of the pricing equation (17)
are measured. The bitcoin price pt and the fraction of bitcoins hacked or lost ht
are directly observed as presented in Section 4. The transactional benefit and
cost however need proxies. The transactional benefit θt+1 is proxied by

θt+1 = α0 + α1Benefit t+1, (19)

where α0 and α1 are parameters to be estimated, and Benefit t+1 is the index
described in the previous section. The transactional cost ϕ′t is proxied by

ϕ′t = β0 + β1CostMiningFeet + β2CostMarketAccesst, (20)

17Useful references on the use of GMM to estimate pricing equations are Hansen (1982),
Hansen and Singleton (1982), and Cochrane (2005).
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where β0, β1, and β2 are estimated and CostMarketAccesst measures the cost
of accessing bitcoin markets:

CostMarketAccesst =
1

1 + MarketAccesst
. (21)

Note that this conversion purposefully lets the cost tend to zero when Marke-
tAccess tends to infinity.

The α and β parameters are estimated as follows. Define the residual et+1

as
et+1 = Dt+1 (1− ht+1) (1 + ρt+1)− 1, (22)

where the deflator Dt+1 is defined as

Dt+1 =
1 + α0 + α1Benefit t+1

1 + β0 + β1CostMiningFeet + β2CostMarketAccesst
. (23)

The equilibrium pricing equation (17) implies that Et(et+1) = 0 where the
subscript on E denotes that the expectation is conditional on all information
available at t. Invoking the law of iterated expectations this implies that for
any random variable vt with an outcome that is observable at or before time t,
the following equation holds:

E (vtet+1) = 0. (24)

Such variable vt is referred to as an instrument. Equation (24) is used to esti-
mate the model parameters: {α0, α1, β0, β1, β2}. A detailed description of the
estimation procedure is in Appendix 6 (see page 29).

We picked the following instruments:

• All model variables evaluated at time t.

• The exponentially weighted moving average of bitcoin return with a half-
life of one year.

• The exponentially weighted moving average of the number of bitcoins
hacked, again with a half-life of one year.

The two variables that were added to the core set of model variables were
picked for their relatively high correlation with future bitcoin return (to avoid
weak-instrument bias). More specifically, the correlation of their value at time
t with bitcoin return at t+ 1 is 0.09 and -0.14, respectively.

Sample. To avoid day-of-the-week effects while keeping a reasonable amount
of data, the daily price series is downsampled to a weekly frequency. The final
sample used in the estimation contains 432 observations and runs from the week
of September 26, 2010, until the week of December 23, 2018.18 Several forks

18Note that this weekly sample starts somewhat later than the daily sample described in
Section 4. The reason is that we use lags in the estimation and thus can only retain weeks for
which the lagged variables are also observed.
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Figure 6: Bitcoin price dataThis figure plots weekly bitcoin returns expressed
in USD. The top graph plots raw returns. The bottom graph smooths these
returns by plotting an exponentially weighted moving average of these returns
with a half-life of one year.

occurred in our sample period that granted bitcoin owners additional coins in
the newly created currency. These coins can be interpreted as a form of dividend
and we therefore add them to the t+1 bitcoin price when computing the bitcoin
return from t to t+ 1. Table 6 in Appendix 3 presents the forks considered and
the value of the new currencies.

The top panel of Figure 6 plots the raw weekly bitcoin return series in USD,
net of hacked coins. This is the series for which the equilibrium pricing equation
(17) should hold. The bottom panel of the figure plots a smoothed version of the
returns series. The raw weekly bitcoin return exhibits substantial variation. Its
mean is 3.9% with a standard deviation of 17.3%, a minimum of -40.4%, and a
maximum of 110.3%. The smoothed series helps visualise a low-frequency trend
of a generally declining return in the course of the sample. We will revisit this
plot after the model has been estimated, overlaying it with the model-implied
required return to verify model fit.

5.2 Results

OLS results. Table 1 Panel (a) presents the results of OLS estimation of
the linearised model in (18). Model (1) only features an intercept, which picks
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Table 1: OLS estimates of the linearised bitcoin pricing model
This table presents OLS estimates of a linearised version of the equilibrium
bitcoin pricing equation. The dependent variable is net Bitcoin return (i.e., net
of fraction of hacked coins). Panel (a) presents the parameter estimates for the
Bitcoin pricing equation and Panel (b) does the same except that all regressors
are observed at time t. t-values are in parentheses and statistical significance
is indicated by one, two, or three stars corresponding to the 10%, 5%, or 1%
level, respectively.

Variable Model
(1) (2) (3)

Panel (a): OLS estimates linearised model
Intercept 0.039∗∗∗

(4.68)
−0.16
(−1.57)

−0.15
(−1.46)

Benefitt+1 −0.0061∗∗∗
(−4.35)

−0.0054∗∗∗
(−4.13)

CostMiningFeet 0.78
(1.37)

CostMarketAccesst 0.52∗∗
(2.44)

0.50∗∗
(2.33)

R2 0.00 0.04 0.04
#Observations 432 432 432

Panel (b): OLS estimates linearised model, all regressors observed at time t
Intercept 0.039∗∗∗

(4.68)
−0.16
(−1.57)

−0.15
(−1.45)

Benefitt −0.0061∗∗∗
(−4.35)

−0.0054∗∗∗
(−4.13)

CostMiningFeet 0.79
(1.38)

CostMarketAccesst 0.52∗∗
(2.43)

0.49∗∗
(2.32)

R2 0.00 0.04 0.04
#Observations 432 432 432
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up the average weekly bitcoin return of 3.9%. Model (2) is the full-fledged
model and its estimation shows that only Benefitt+1 and CostMarketAccesst
are statistically significant. Importantly, the coefficients carry the right sign: a
negative one for the benefit variable and a positive one for the cost variable.
CostMiningFeet is insignificant and is therefore removed in Model (3) where the
other two explanatory variables remain significant with the same sign. To check
robustness, Panel (b) presents the estimation results when all regressors are
observed at time t. The results are very similar to those presented in Panel (a).
With intent, we keep the discussion of the OLS results brief, as this specification
only serves to show that GMM results are robust and to set reasonable starting
values for the GMM numerical optimisation.

GMM results. Before implementing GMM, one identification issue needs to
be resolved. Equations (22) and (23) suggest that it will be hard to separately
identify the two coefficients associated with the two intercepts terms: α0 and
β0. To grasp the intuition consider the simple case in which the benefits and
costs of holding bitcoins are constant through time: α1 = β1 = β2 = 0. In this
case, (22) simplifies to (using (23)):

et+1 = (1− ht+1)
1 + α0

1 + β0
(1 + ρt+1)− 1. (25)

Clearly, only the ratio (1 +α0)/(1 +β0) is identified, not the coefficients α0 and
β0 separately. In other words, any value of this ratio can be generated by an
infinite number of (α0, β0) pairs. If however α1, β1, and β2 are not zero, it is
not strictly the case that α0 and β0 are unidentified.19 But, trying to estimate
both of them generates numerical instability and large standard errors. To avoid
these problems we set α0 to zero and, when interpreting the estimate for β0, we
will bear in mind that it reflects the intercepts of both the costs and the benefits
of holding bitcoins. It turns out that the issue becomes moot in our application
as the estimate of β0 is not statistically different from zero.

Table 2 presents the GMM estimation results. Model (1) is the full-fledged
model without any parameter constraint (other than α0 = 0). The intercept is
insignificant. The other parameters carry the predicted sign and all are signif-
icant except for CostMiningFeet. In line with our model, the bitcoin required
return significantly decreases in the proxy for transactional benefits (α̂1 > 0
where hats denote parameter estimates). The required return significantly in-

creases in the cost of market access (β̂2 > 0).
Model (2) and (3) drop the insignificant variables in Model (1) starting

with the intercept as it is the least significant one. As CostMiningFeet remains
insignificant in Model (2) it is also dropped from the model. Model (3) features
only Benefitt+1 and CostMarketAccesst which are both highly significant. Note
that significance is higher than what it was for OLS which suggests that honoring
the model-implied non-linearity is important.

19Strictly speaking, the intercepts become mathematically identified but only through
second-order terms. The first-order approximation of the model as derived in (18) shows
that they are not identified in a first-order approximation.
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Table 2: GMM estimates of model parameters
This table presents GMM estimates of the model parameters. t-values are in
parentheses and statistical significance is indicated by one, two, or three stars
corresponding to the 10%, 5%, or 1% level, respectively.

Variable Parameter Model
(1) (2) (3)

Benefitt+1 α1 0.0064∗∗∗
(3.57)

0.0055∗∗∗
(4.15)

0.0051∗∗∗
(3.94)

Intercept β0 −0.17
(−1.27)

CostMiningFeet β1 0.84
(1.36)

0.75
(1.24)

CostMarketAccesst β2 0.56∗
(1.85)

0.20∗∗∗
(4.97)

0.20∗∗∗
(4.96)

#Observations 432 432 432

2011 2012 2013 2014 2015 2016 2017 2018 2019

0.0%

2.5%

5.0%

7.5%

10.0%

12.5%

15.0%

17.5%

Smoothed weekly BTC return (t+1) (EWMA halflife 1 year)
Required weekly BTC return based on OLS parameter estimates
Required weekly BTC return based on GMM starting values
Required weekly BTC return based on GMM parameters estimates

Figure 7: Illustration of model fit. This graph plots the smoothed realised net
return on bitcoin overlaid with model-implied required returns. The models
include: the linearised model estimated with OLS, the baseline model evaluated
at GMM starting values and the model evaluated at GMM estimates.

23



A natural way to judge model fit is to plot the smoothed realised bitcoin
return of Figure 6 and overlay it with the model-predicted required return im-
plied by (17). We assume that Benefitt+1 is known at time t (similar to what
we did for inflation in A2). This is a rather innocuous assumption given that
Benefitt is a rather persistent series (see Figure 5). Assuming further that ht+1

is independent of ρt+1 with constant mean h̄, straightforward manipulation of
(17) yields the required bitcoin expected return:

Et (ρt+1) =
1 + β̂0 + β̂2CostMarketAccesst(

1− h̄
)

(1 + α̂1Benefit t+1)
− 1. (26)

Figure 7 plots smoothed realised returns overlaid with required returns based on
GMM estimates. For completeness it also features required returns based on the
linearised model that was estimated with OLS as well as required returns based
on GMM starting values (calibrated from these OLS estimates). All required-
return series seem to track the time-varying mean of the realised return series
rather well, which suggests that the model fits the data reasonably well.

Economic significance. To assess economic significance of the variables that
drive the required return, it is useful to decompose this total return across these
variables. The linearised version of the model (18) allows us to do so.

Figure 8 illustrates the decomposition of the model-implied required return.
The top graph depicts the total required return which is the sum of the three
components that follow in the three graphs below it. The figure leads to the
following observations. First, the model-implied (weekly) required return on
bitcoin hovers between 0% and 15%. Second, the contribution of hack risk is
relatively small, as it amounts to 0.04%. Third, the benefit component starts
around 0% and steadily grows in size to -10% and levels off somewhat in magni-
tude to end around -8%. This demonstrates that, with transactional opportuni-
ties growing through time, the required return on bitcoin becomes substantially
lower (i.e., up to 10 percentage points per week lower). Finally, the difficulty
to access the bitcoin market adds almost 15% to the required return initially,
but within a year it drops to slightly less than 10% weekly and stays at this
level throughout. Overall, the decomposition illustrates that time variation in
the required return on bitcoin is economically significant, it is high initially due
to the high cost of market access but decreases through time primarily due to
a gradual increase in transactional benefit.

Finally, how much of the time variation in bitcoin return can be attributed
to a changing model-implied required return? Let us compute an R2. The
standard deviation of the model-implied required return is 3.3%. For realised
returns it is 17.3%. The R2 therefore is 0.0332/0.1732 = 3.6%. Thus, changes
in fundamental variables explain only a small fraction of the variation in bitcoin
returns.

To interpret that result it is useful to bear in mind that, in our theoretical
model, return volatility can include extrinsic noise in addition to changes in
fundamental variables, as stated in Proposition 3. Thus, in the framework of
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Figure 8: Bitcoin required return. This figure plots the required bitcoin return
and a decomposition of this return across all model variables that contribute to
it. The decomposition is based on a first-order approximation of the equilibrium
pricing model. The top graph plots the total required return and the three
graphs below it decompose it into three components. The decomposition is
based on Model (3) in Table 2.
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our model, our empirical results suggest a decomposition of the total variance of
bitcoin returns: 3.6% stem from changes in fundamentals, while the remaining
96.4% reflect extrinsic noise.

Discussion. Extrinsic noise as in Proposition 3, however, cannot entirely ra-
tionalise high-frequency bitcoin dynamics. In the model, innovations in the
extrinsic noise at time t+1 cannot be predicted based on what is known at time
t. Correspondingly, the residuals (22) cannot be predicted using time t infor-
mation. This does not hold out in the data as residuals from our estimation are
positively autocorrelated. This suggests the presence of high-frequency frictions
that our simple perfect-markets model does not account for. One candidate
friction is slow price discovery due to imperfect arbitrage. Makarov and Schoar
(2020) show that restrictions to capital flows across countries can delay price
adjustments. Hautsch, Scheuch, and Voigt (2020) show that slow and uncertain
settlement also impedes arbitrage.

Finally, one might be concerned about stationarity, given that the bitcoin
price seems to behave like a random walk. However, the moment condition (17)
used in the GMM estimation is expressed in terms of bitcoin returns, not prices.
A Dickey-Fuller test based on raw bitcoin returns rejects the null hypothesis of
non-stationarity at a significance level of 1%.

6 Conclusion

We build an overlapping generations rational expectation equilibrium model re-
lating the price of a cryptocurrency to its fundamentals: transactional costs and
benefits. The model shows how these fundamentals should be priced, and high-
lights the interactions between expected future prices and fundamentals. The
model also shows that equilibrium price volatility can be increased by extrinsic
noise unrelated to fundamentals.

We then confront the equilibrium pricing equation to a hand-collected dataset
of fundamental events that affect the ease for agents to transact in bitcoins. Us-
ing these data we construct proxies for the fundamentals of bitcoin, i.e. its
transaction costs and benefits. We show that these fundamentals are significant
determinants of bitcoin returns, and we provide quantitative measures of their
relative importance over time. We also find that a large part of the variation in
prices is not explained by our proxies, which can reflect extrinsic noise or other
frictions.
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Appendix 1: Proofs

Proof of Proposition 1:

In the main text, we solved for prices and quantities under the assumption that
consumption was strictly positive (i.e. the constraint cyt ≥ 0 did not bind).
We show here that equation (6) also holds when considering explicitly the non-
negativity constraint on young investors’ consumption.

Formally, let µ be the Lagrange multiplier associated with the constraint that
young investors’ consumption be non-negative, cyt ≥ 0. With that constraint,
the young investors’ optimisation problem becomes

max
qt,st,q̂t

u(cyt ) + βEtu(cot+1) + µcyt

First-order conditions with respect to qt, st and q̂t write, respectively

−u′(cyt )pt + βEt
[
u′(cot+1)(1− ht+1)

(1 + θt+1)

1 + ϕ′(qt)
pt+1

]
= µpt (27)

−u′(cyt ) + β(1 + rt)Et
[
u′(cot+1)

]
= µ (28)

−u′(cyt )p̂t + βEt
[
u′(cot+1)p̂t+1

]
= µp̂t (29)

Suppose µ > 0, i.e., the consumption non-negativity constraint binds. Then
combining (27) and (28) yields the cryptocurrency pricing equation (6) in Propo-
sition 1, which simplifies to (11) when investors are risk-neutral.

Similarly, combining (28) and (29) yields the fiat currency pricing equation:

p̂t =
1

1 + rt
Et
[

u′(cot+1)

Et[u′(cot+1)]
p̂t+1

]
which simplifies to (14) when agents are risk-neutral. All the other derivations
in the main text follow from these results. QED

Proof of Proposition 3:

p̄t = λ

(
t∏

τ=1

uτ

)
pt

= λ

(
t∏

τ=1

uτ

)
Et

[(
K∏
k=1

(1− ht+k)
(1 + Tt+k)

1 + rt+k−1

)
pt+K

]

27



by (12). Thus, because Et (uτ ) = 1, ∀τ > t,

p̄t = λ

(
t∏

τ=1

uτ

)
Et

[(
K∏
k=1

(1− ht+k)
(1 + Tt+k)

1 + rt+k−1

)(
t+K∏
τ=t+1

ũτ

)
pt+K

]

= Et

[(
K∏
k=1

(1− ht+k)
(1 + Tt+k)

1 + rt+k−1

)
λ

(
t∏

τ=1

uτ

)(
t+K∏
τ=t+1

ũτ

)
pt+K

]

= Et

[(
K∏
k=1

(1− ht+k)
(1 + Tt+k)

1 + rt+k−1

)
p̄t+K

]
,

where the last equality stems from the definition of p̄t+K . This shows that each
price p̄t verifies (12). {p̄t} is therefore an equilibrium price sequence as long as

p̄t ≤ eyt
Xt+ϕt(Xt)

. QED
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Appendix 2: Details of the GMM estimation

We use standard two-step GMM to estimate the model. The GMM penalty
function that was minimised with respect to the model parameters is:

P = m′Wm ∈ R, (30)

where m is a vector that collects the inner products of the model’s residuals
(e ∈ RT−1) and the n instrumental variables that appear as columns in V ∈
R(T−1)×n, and W ∈ Rn×n is the standard weighting matrix. Formally, m can
be written as:20

m = V ′e ∈ Rn×1 (31)

where

{
e =

(
e2 · · · et+1 · · · eT

)′
,

v =
(
v1 · · · vt · · · vT−1

)′ ∈ R(T−1)×1.
(32)

In the first step of the estimation the weighting matrix W is taken to be the
identity matrix.21 The parameters estimated by minimising P in this first step
are then used to compute the moment covariance matrix which serves as W in
the second step. The parameter estimates resulting from this second step are
the final estimates.

Statistical inference follows standard procedure. Let G ∈ Rn×n be the gra-
dient of the n moments (i.e., the n elements of m) used in the GMM penalty
function in (30), with respect to the deep parameters. The covariance matrix
of the estimators is: (

G′
(

1

T
M ′M

)−1
G

)−1
, (33)

where M ∈ R(T−1)×n stacks the columns associated with the empirical mo-
ments. The first column, for example, is:

e ◦ v1 ∈ R(T−1)×1, (34)

where ◦ is the Hadamard product (i.e., element-wise multiplication) and v1 is
the first column of V .

Numerical issues. To come up with sensible starting values in the numerical
optimization for the GMM estimation, we take the following approach:

First, we Taylor expand (22) around the mean explanatory variables to con-
vert the OLS estimates of Table 1 to reasonable starting values for {αi, βj} of
(23). Define the net bitcoin return as:

rt = (1− ht) (1 + ρt)− 1. (35)

20Note that the length of the time series is T − 1 as opposed to T as next week’s residual
et+1 is multiplied by the instrumental variables realised/known at time t (vt).

21All instrumental variables are standardised to ensure equal weighting in the first stage of
GMM. The only exception is the intercept variable as standardisation is not meaningful for a
variable that is constant.
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Then, assuming xt+1 is known at time t and, for simplification, assume xt+1

and yt are univariate,

E ((1 + rt+1)Dt+1) = 1⇔ E (rt+1) =
1

Dt+1
− 1 =

1 + β0 + β1yt
1 + α1xt+1

− 1. (36)

Then Taylor expanding (36) around the mean of xt+1 and yt denoted x̄ and ȳ
respectively, one gets:

E (rt) ≈
1 + β0 + β1ȳ

1 + α1x̄
+ α1

1 + β0 + β1ȳ

(1 + α1x̄)
2 x̄− β1

1

1 + α1x̄
ȳ − 1︸ ︷︷ ︸

b0

+ (37)

−α1
1 + β0 + β1ȳ

(1 + α1x̄)
2︸ ︷︷ ︸

b1

xt+1 + β1
1

1 + α1x̄︸ ︷︷ ︸
b2

yt,

where {b0, b1, b2} are the regression coefficients of the OLS regression

rt+1 = b0 + b1xt+1 + b2yt. (38)

Then taking the simple average on both sides of (38) yields:

1 + β0 + β1ȳ

1 + α1x̄
= b0 + b1x̄+ b2ȳ + 1. (39)

Therefore using the definition of b1 in (37) into (39) yields:

b1 = (b0 + b1x̄+ b2ȳ + 1)
−α1

1 + α1x̄
. (40)

The estimate of α1, denoted by adding a hat, becomes

α̂1 =
−b1

1 + b0 + 2b1x̄+ b2ȳ
. (41)

What remains is to solve for both betas. Let us first consider the definition of
b1 from (37) with α1 replaced by its estimate α̂1 from (41):

b2 = β1
1

1 + α̂1x̄
(42)

which yields
β̂1 = b2 (1 + α̂1x̄) . (43)

Finally plug the estimates α̂1 from (41) and β̂1 from (43) into b0 as defined in
(37) to get:

b0 =
1 + β0 + β̂1ȳ

1 + α̂1x̄
+ α̂1

1 + β0 + β̂1ȳ

(1 + α̂1x̄)
2 x̄− β̂1

1

1 + α̂1x̄
ȳ − 1 (44)
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which yields

b0 −
1

1 + α̂1x̄
− α̂1x̄(1 + β̂1ȳ)

(1 + α̂1x̄)
2 + 1 =

1

1 + α̂1x̄

(
1 +

α̂1x̄

1 + α̂1x̄

)
β0 (45)

and therefore

β̂0 =
α̂1x̄

(
α̂1x̄− β̂1ȳ

)
1 + 2α̂1x̄

+
(1 + α̂1x̄)

2

1 + 2α̂1x̄
b0. (46)

Second, the parameter values computed in the previous step are used as
starting values in a standard steepest-descent algorithm (Broyden-Fletcher-
Goldfarb-Shanno algorithm) that minimises the GMM penalty function of (30).
The parameters that minimise this function become the GMM estimates.
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Appendix 3: Additional tables

Table 3: Hacks, thefts and losses events

Date Amount (BTC) Description

2011-06-13 25000 User Allinvain hacked
2011-06-19 2000 MtGox theft
2011-06-25 4019 MyBitcoin theft
2011-07-26 17000 Bitomat loss
2011-07-29 78739 MyBitcoin theft
2011-10-06 5000 Bitcoin7 hack
2011-10-28 2609 MtGox loss
2012-03-01 46653 Linode hacks
2012-04-13 3171 Betcoin hack
2012-04-27 20000 Tony76 Silk Road scam
2012-05-11 18547 Bitcoinica hack
2012-07-04 1853 MtGox hack
2012-07-13 40000 Bitcoinica theft
2012-07-17 180819 BST Ponzi scheme
2012-07-31 4500 BTC-e hack
2012-09-04 24086 Bitfloor theft
2012-09-28 9222 User Cdecker hacked
2012-10-17 3500 Trojan horse
2012-12-21 18787 Bitmarket.eu hack
2013-05-10 1454 Vircurex hack
2013-06-10 1300 PicoStocks hack
2013-10-02 29655 FBI seizes Silk Road funds
2013-10-25 144336 FBI seizes Silk Road funds
2013-10-26 22000 GBL scam
2013-11-07 4100 Inputs.io hack
2013-11-12 484 Bitcash.cz hack
2013-11-29 5400 Sheep Marketplace closes
2013-11-29 5896 PicoStocks hack
2014-02-13 4400 Silk Road 2 hacked
2014-02-25 744408 MtGox collapse
2014-03-04 896 Flexcoin hack
2014-03-04 97 Poloniex hack
2014-03-25 950 CryptoRush hacked
2014-10-14 3894 Mintpal hack
2015-01-05 18886 Bitstamp hack
2015-01-28 1000 796Exchange hack
2015-02-15 7170 BTER hack
2015-02-17 3000 KipCoin hack

Continued on next page
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Table 3: Hacks, thefts and losses events

Date Amount (BTC) Description

2015-05-22 1581 Bitfiniex hack
2015-09-15 5000 Bitpay fishing scam
2016-01-15 11325 Cryptsy hack
2016-04-07 315 ShapeShift hack
2016-04-13 154 ShapeShift hack
2016-05-14 250 Gatecoin hack
2016-08-02 119756 Bitfinex hack
2016-10-13 2300 Bitcurex hack
2017-04-22 3816 Yapizon hack
2017-07-12 1942 AlphaBay admins assets sized by FBI
2017-07-20 1200 Hansas funds seized by Dutch police
2017-12-06 4736 NiceHash hacked
2018-06-20 2016 Bithumb hacked
2018-09-20 5966 Zaif hacked
2018-10-28 8 MapleChange hack / scam
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Table 4: Market access events

Date Effect Regions Weight Description

2010-07-17 1 USA 0.2270 MtGox USD/BTC exchange opens
2010-10-25 1 USA 0.2270 MtGox eases fund transfers
2010-12-07 1 USA 0.2270 MtGox partners with e-payment company Paxum
2011-01-06 1 EMU 0.1858 Bitcoin-Central EUR/BTC exchange opens
2011-04-01 1 POL 0.0072 Bitomat PLN/BTC exchange opens
2011-06-08 1 CAN 0.0244 CaVirTex CAD/BTC exchange opens
2011-06-13 1 CHN 0.1029 BTCC China CNY/BTC exchange opens
2011-07-28 1 BRA 0.0357 Mercado Bitcoin BRL/BTC exchange opens
2011-08-27 1 JPN 0.0839 MtGox opens JPY/BTC
2011-09-02 1 AUS 0.0190 MtGox opens AUD/BTC
2011-09-06 1 GBR 0.0359 MtGox opens GBP/BTC
2012-02-10 -1 USA 0.2158 Paxum exits bitcoin business
2012-08-17 1 RUS 0.0295 BTC-e opens RUB/BTC
2013-03-20 1 IND 0.0241 LocalBitcoins opens INR/BTC
2013-05-14 -1 USA JPN 0.2842 MtGox suspends fund transfers
2013-09-03 1 KOR 0.0169 Korbit KRW/BTC exchange opens
2013-10-29 1 CAN 0.0239 World first Bitcoin ATM opens
2013-12-03 -1 CHN 0.1240 China bans financial institutions from using bitcoin
2013-12-18 -1 CHN 0.1240 BTC China suspends deposits in yuan
2014-01-30 1 CHN 0.1316 BTC China reinstates deposits in yuan
2014-02-09 1 IDN 0.0112 Indodax opens IDR/BTC
2014-02-25 -1 JPN 0.0612 MtGox shuts down
2014-03-08 1 JPN 0.0612 ANX opens JPY/BTC
2014-10-14 1 PAK 0.0031 Urdubit PKR/BTC exchange opens
2015-07-08 1 NGA 0.0066 BitX opens NGN/BTC
2017-08-13 -1 NPL 0.0003 Nepal bans bitcoin and other cryptocurrencies
2017-09-30 -1 CHN 0.1501 China’s exchanges shut down
2017-11-20 -1 MAR 0.0014 Morocco Central Bank bans transactions in bitcoin
2017-12-10 1 USA 0.2409 Future trading starts at CBOE
2018-01-01 -1 EGY 0.0029 Egypt’s grand mufti issues a fatwa declaring bitcoin

trading unlawful under Sharia law
2018-01-13 -1 IDN 0.0121 Bitcoin banned in Indonesia
2018-01-16 -1 CHN 0.1586 China bans citizens from trading bitcoin
2018-04-06 -1 PAK 0.0036 Pakistan Central Bank bans Bitcoin trading by fi-

nancial companies
2018-04-08 -1 PAK 0.0036 Urdubit closes
2018-05-29 1 IDN 0.0121 Bitcoin can be legally traded as a commodity in In-

donesia
2018-06-20 -1 KOR 0.0189 Bithumb suspends all deposits and withdrawals

Continued on next page
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Table 4: Market access events

Date Effect Regions Weight Description

2018-07-06 -1 IND 0.0318 Indian central bank forbids banks from dealing with
entities working with digital currencies

2018-08-01 -1 KOR 0.0189 Bithumb suspends new account registration
2018-08-04 1 KOR 0.0189 Bithumb reopens deposits and withdrawals
2018-08-16 1 THA 0.0059 Thailands SEC authorizes seven cryptocurrency

firms, including five crypto exchanges, to operate in
the country

2018-08-30 1 KOR 0.0189 Bithumb resumes accepting new user accounts
2018-10-02 1 IDN 0.0121 Indonesia permits futures trading of crypto assets
2018-11-12 1 RUS 0.0193 Singapores Huobi opens an office in Russia, with

Russian language support
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Table 5: Transaction benefits events

Date Effect Illegal Description

2011-01-23 1 1 Silk Road opens
2011-02-25 1 0 CoinCard service opens
2011-06-08 1 0 BTC Buy service opens
2011-06-30 1 1 Black Market Reloaded opens
2012-09-04 -1 0 CoinCard trading service permanently closed
2012-11-15 1 0 WordPress accepts bitcoin
2013-02-06 1 0 PizzaForCoins allows users to order pizza delivery with bit-

coins
2013-04-03 -1 0 BTC Buy stops selling prepaid cards
2013-05-09 1 0 Gyft accepts bitcoin
2013-08-27 1 0 eGifter accepts bitcoin
2013-10-02 -1 1 Silk Road closes
2013-11-06 1 1 Silk Road 2.0 opens
2013-11-22 1 0 CheapAir accepts bitcoin for flights
2013-11-27 1 0 Shopify adds a bitcoin payment option for its sellers
2013-12-02 -1 1 Black Market Reloaded closes
2014-01-09 1 0 Overstock.com accepts bitcoin
2014-01-24 1 0 TigerDirect accepts bitcoin
2014-02-03 1 0 CheapAir accepts bitcoin for hotel reservations
2014-06-10 1 0 REEDS Jewelers accepts bitcoin
2014-06-11 1 0 Expedia accepts bitcoin for hotel reservation
2014-07-01 1 0 Newegg accepts bitcoin
2014-07-18 1 0 Dell accepts bitcoin
2014-08-14 1 0 DISH Network accepts bitcoin
2014-11-06 -1 1 Silk Road 2.0 closes
2014-12-11 1 0 Microsoft accepts bitcoin from US customers
2014-12-22 1 1 opening of AlphaBay
2015-01-22 1 0 Paypal accepts bitcoin
2015-02-19 1 0 Dell Expands bitcoin payments to UK and Canada
2015-02-19 1 0 Payment processor Stripe offers bitcoin integration
2016-03-03 1 0 Bidorbuy accepts bitcoin
2017-04-27 1 0 Valve accepts bitcoin
2017-07-05 -1 1 AlphaBay closes
2017-10-19 -1 0 Dell no longer accepts bitcoin
2017-11-29 1 0 Roadway Moving Company accepts bitcoin
2017-12-06 -1 0 Steam no longer accepts bitcoin
2017-12-26 -1 0 Microsoft no longer accepts bitcoin
2018-01-09 1 0 Microsoft resumes bitcoin payments
2018-03-23 -1 0 Payment processor Stripe ends support for bitcoin
2018-05-10 -1 0 Expedia no longer accepts bitcoin
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Table 6 lists the Bitcoin forks (up to 2018) that granted “free coins” to bit-
coin owners. The table reports the name of the cryptocurrency forked from
Bitcoin, the tickers under which it is or has been quoted on exchange plat-
forms, the type of fork (a hard fork materialises as a new branch hooked on
the main blockchain; an airdrop is a separate blockchain for a cryptocurrency
whose initial ownership is based on the main chain), the cryptocurrencies that
have been forked or used for airdrops (in the latter case, ownership of new units
of cryptocurrency could be granted to owners of more than one cryptocurrency,
creating a so-called “fork-merge”), the day of the snapshot of the main chain that
determines to which addresses new units of cryptocurrency have been granted
(for a hard fork, this is the day of the last common parent block; for airdrop,
this is the day of a snapshot block, that is, the block used as a reference to
grant new units of cryptocurrency), the number of new units of cryptocurrency
each bitcoin held at the time of the snapshot granted, the earliest day (at or
after the snapshot date) at which a market price was available (as reported by
CoinMarketCap, CoinGecko, or BitInfocharts), and the closing price in USD of
the cryptocurrency for that day. Thus, the value in USD a bitcoin owner could
cash in from each bitcoin held at the time of the snapshot is the ratio times this
market price. Note: two cryptocurrencies granted new units of cryptocurrency
per Bitcoin address (and not in proportion of the amount held): Clams has been
granted to Bitcoin addresses with a balance of more than 0.001 bitcoins; Bitcore
has been granted to Bitcoin addresses with a balance of 0.01 bitcoins or more.
We neglect these exceptions, applying these two ratios per-bitcoin instead.
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