# CO2 emissions and energy technologies in Western Europe

J. Barrera-Sentana $^a$  G. Marerro $^a$  L. A. Puch $^b$  A. Díaz $^c$ 

<sup>a</sup>U. de La Laguna <sup>b</sup>U. Complutense de Madrid

<sup>c</sup>Universidad Carlos III de Madrid

#### **Motivation**

#### The big question

- The goal of the European Green Deal is to be climate-neutral by 2050.
- Target: Reducing, at least, 55% of 1990 emissions by 2030
- Context to this number:

|         | % of EU CO2 2020 CO2 Em. |               | Growth rate (%) |       |        |
|---------|--------------------------|---------------|-----------------|-------|--------|
|         | Em. 2019                 | / 2030 Target | 20-30           | 90-19 | 19-20  |
| EU      |                          | 1.51          | -4.04           | -0.84 | -13.14 |
| France  | 10.18                    | 1.52          | -4.10           | -0.71 | -16.01 |
| Germany | 23.21                    | 1.33          | -2.84           | -1.34 | -11.24 |
| Italy   | 11.25                    | 1.58          | -4.47           | -0.69 | -13.06 |
| Spain   | 9.23                     | 2.28          | -7.92           | 0.81  | -18.68 |

Source: BP Stats review 2021.

To calculate the costs of achieving this goal we need to study short run determinants of CO2 emissions.

# CO2 emissions and economic activity

Related ...



Avge GDPpc growth: 1.54% vs 1.69%; Avge CO2pc growth: -1.34% vs -0.01%

## CO2 emissions and economic activity

... but can we infer CO2-GDP elasticity?



How much of the relationship is trend? cycle?



3 / 7

## **Energy Technologies**

matter for the connection CO2-GDP – a lot of heterogeneity



CO2 Emissions growth in the pool: significant and, positive correlation with El change; negative correlation with RES change.

## **Energy and the Macroeconomy**

The intuition

- We want to look at the relationship CO2-GDP with the lenses of a macro model.
- The key issue is the energy technology.
- We build on Díaz & Puch (2019) who study a model economy where capital and energy are complementary in the short run.
- Investing in efficient capital reduces energy requirements and the energy bill, but it takes time (and, perhaps, productivity).
- Investing in renewables breaks the link between energy intensity and emissions.

## **Energy and the Macroeconomy**

To fix ideas

ullet Gross production (per unit of labor) requires k and e (whatever the source),

$$y_t = \left\{ \begin{array}{ll} A_t \, k_t^\alpha \, e_t^\theta, & \text{if } e_t = v_t \, k_t; \\ 0, & \text{otherwise,} \end{array} \right.$$

where  $v_t$  is a technological (energy saving) index of the unit of capital, and  $\widetilde{A}_t$  is an unadjusted measure of total factor productivity.

• This can be rewritten:

$$y_t = A_t \, v_t^{-\alpha} \, e_t^{\theta}.$$

 $\Rightarrow$  higher production, y, higher energy use, e, higher emissions.... unless using efficient technologies (low intensity, v), or using renewables.

#### **Estimation results: DPD with fixed effects**

Positive elasticity of CO2 emissions to GDP: the cycle matters...

|                          | CO2pc growth |            |            |            |            |           |
|--------------------------|--------------|------------|------------|------------|------------|-----------|
|                          | (1)          | (2)        | (3)        | (4)        | (5)        | (6)       |
| Western Europe 16        |              |            |            |            |            |           |
| Lag of emissions (trend) | -0.0227***   | -0.0367*** | -0.0888*** | -0.0422*** | -0.0845*** | -0.0449** |
|                          | (0.00772)    | (0.0140)   | (0.0169)   | (0.0127)   | (0.0148)   | (0.0123)  |
| GDPpc growth             | 0.652***     | 0.683***   | 0.434***   | 0.813***   | 0.392***   | 0.754***  |
|                          | (0.0937)     | (0.0956)   | (0.121)    | (0.109)    | (0.109)    | (0.103)   |
| El change                |              |            |            | 0.034***   |            | 0.031***  |
|                          |              |            |            | (0.003)    |            | (0.003)   |
| REShare change           |              |            |            |            | -0.918***  | -0.008*** |
| -                        |              |            |            |            | (0.003)    | (0.002)   |
| Constant                 | 0.184***     | 0.316**    | 0.744***   | 0.360***   | 0.712***   | 0.385***  |
|                          | (0.0683)     | (0.125)    | (0.151)    | (0.111)    | (0.132)    | (0.107)   |
| Country fixed effects    | No           | Yes        | Yes        | Yes        | Yes        | Yes       |
| Time fixed effects       | No           | No         | Yes        | Yes        | Yes        | Yes       |
| $R^2$                    | 0.095        | 0.127      | 0.372      | 0.630      | 0.468      | 0.649     |
| N                        | 624          | 624        | 624        | 624        | 624        | 624       |

 $\Delta \ln p_{i,t} = \beta_0 + \alpha_i + \mathbf{\eta_t} + \beta_1 p_{i,t-1} + \beta_2 \Delta \ln y_{i,t} + \beta_3 \Delta E I_{i,t} + \beta_4 \Delta R E s_{i,t} + \varepsilon_{i,t}$ 

(6) Trend brings a reduction rate of 0.05% emissions for 1% GDP. Not enough. The cycle matters (GDPpc growth) and energy intensity (El change).

#### Estimation results: DPD with fixed effects

... but its size depends on energy intensity, renewables are a bonus

|                                        | CO2pc growth                   |                                 |                                 |                                 |                                |
|----------------------------------------|--------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------|
|                                        | (1)                            | (2)                             | (3)                             | (4)                             | (5)                            |
| Western Europe 16                      |                                |                                 |                                 |                                 |                                |
| Lag of emissions                       | -0.0481***<br>(0.0121)         | -0.0447***<br>(0.0121)          | -0.0485***<br>(0.0119)          | -0.0476***<br>(0.0119)          | -0.0499***<br>(0.0133)         |
| GDPpc growth                           | 0.100                          | 0.744***                        | 0.107                           | 0.0591                          | -0.634                         |
| El change                              | (0.165)<br>0.031***<br>(0.003) | (0.129)<br>0.031***<br>(0.003)  | (0.173)<br>0.031***<br>(0.003)  | (0.326)<br>0.031***<br>(0.003)  | (0.575)<br>0.031***<br>(0.003) |
| REShare change                         | -0.008***<br>(0.002)           | -0.008***<br>(0.002)            | -0.008***<br>(0.002)            | -0.008***<br>(0.002)            | -0.007***                      |
| GDPpc growth $\times$ EI $_{t-1}$      | 0.137***                       |                                 | 0.139***                        | 0.146**                         | 0.244**                        |
| GDPpc growth $\times$ REShare $_{t-1}$ | (0.0356)                       | 0.0107                          | (0.0353)<br>-0.0160             | (0.0572)<br>0.00811             | (0.0949)<br>0.137              |
| Constant                               | 0.413***<br>(0.106)            | (0.0892)<br>0.382***<br>(0.105) | (0.0893)<br>0.416***<br>(0.103) | (0.0970)<br>0.407***<br>(0.104) | (0.153)<br>0.426***<br>(0.117) |
| Country fixed effects                  | Yes                            | Yes                             | Yes                             | Yes                             | Yes                            |
| Time fixed effects                     | Yes                            | Yes                             | Yes                             | Yes                             | Yes                            |
| $R^2$                                  | 0.654                          | 0.649                           | 0.654                           | 0.653                           | 0.631                          |
| N                                      | 624                            | 624                             | 624                             | 610                             | 560                            |

 $\Delta \ln p_{i,t} = \text{ above } + \beta_{21} \Delta \ln y_{i,t} \times EI_{i,t-1} + \beta_{41} \Delta \ln y_{i,t} \times REs_{i,t-1} + \varepsilon_{i,t}$ 

It is not GDP growth. It is GDP growth whenever Energy Intensity is high. (4&5): not driven by extreme values (bottom/top 1%&5% GDP growth).

### **Estimation results: DPD with fixed effects**

Back of the envelope estimates

#### Can we achieve 2030 target without GDP falling?

- Keeping constant renewables share, a growth rate of 2% of GDP together with a reduction of emissions of 4% requires reducing energy intensity by one fourth... in a year.
- Augmenting the renewables share in  $1\sigma$  ( $\sim$  1.7%) reduces emissions in  $\sim$  1%. That is, augmenting the share in 6.8% points... in a year.

## **Policy Implications**

#### Cyclical concerns

- It is GDP growth whenever Energy Intensity is high that triggers the alarms.
  - Absolute priority for policies to achieve conditional convergence in energy intensity standards across Western European countries (fostering integration).
  - Renewables do not play much on CO2-GDP elasticity (w/ exceptions), by now, but still low levels of renewables. Díaz, Marrero, Puch & Rodríguez find frontier renewables increase productivity. (2019)
- Immediate action:
  - A recommendation for tax-based (and subsidies) cyclical stabilization (as a complement to cap and trade) Díaz & Puch (2016).
  - For instance, procyclical fuel taxes and fuel economy standards in the transport sector, as well as procyclical regulations towards energy efficiency and inducement for renewable energies in the power sector.